

A Practical Guide to Carlson Survey 2016

**Rick Ellis
Douglas L. Aaberg, PLS
Duke Gardner**

A CADapult Press Publication

Copyright

Copyright © CADapult Press, Inc. 2016

All rights reserved. No part of this publication may be reproduced in any form, or by any means electronic, mechanical, recording, photocopying, or otherwise, without written permission from the publisher, except for brief quotations used in reviews, or for marketing purposes specific to the promotion of this work.

ISBN: 978-1-934865-26-2

Although CADapult Press has made every attempt to ensure the accuracy of the contents of this book, the publisher and author make no representations or warranty with respect to accuracy or completeness of the contents in this book, including without limitation warranties of fitness for a particular purpose. The datasets included in this book are for training purposes only.

Carlson Survey and Carlson Civil are registered trademarks of Carlson Software. AutoCAD Civil 3D, AutoCAD Map 3D, and AutoCAD® are registered trademarks of Autodesk, Inc. All other trademarks are the property of their respective owners.

Published in the United States of America by:

CADapult Press, Inc,

(503) 829-8929

books@cadapult-software.com

Printed and manufactured in the United States of America

About the Author

Rick Ellis has worked with and taught Civil/Survey CAD software since the mid-90s. He is the Author of several critically acclaimed books on AutoCAD Map 3D and other CAD packages. He continues to work on projects in a production environment, in addition to teaching classes to organizations both large and small.

This practical background and approach has made him an award winning speaker at Autodesk University, a member of the national speaker team for the AUGI CAD Camps and a sought after instructor by organizations around the world.

Rick can be reached at: rick@cadapult-software.com

Douglas L. Aaberg, PLS is a licensed Professional Land Surveyor in the Commonwealth of Massachusetts and in the State of Colorado. His career in the Land Surveying/Civil Engineering business spans four decades. Having used Carlson Software exclusively since 1998, Doug is a recognized expert in applying the continually expanding capability of Carlson's programming to the everyday "work flow" of land surveyors and engineers. After owning and operating his own company for fifteen years, Doug now dedicates his time consulting to both large and small land survey and engineering firms through on-site training, remote support and individually tailored documentation.

Duke Gardner has served the land surveying and civil engineering communities for over 35 years in a wide variety of support roles. His focus on the theory as well as the practice skills needed to achieve successful implementation made him an excellent partner in the author team for this guide.

Acknowledgements

Thank you to Carlson Software for their cooperation. A special thanks to Gary Rosen and Lauren Lax from Carlson Software for their assistance and encouragement. Without it this book would not have been possible.

Exercise Data

I would like to thank the City of Springfield, Oregon for providing the data for parts of this book. The dataset provided is for illustration purposes only. While it is based on real world information to add relevance to the exercises, it has been altered and modified to more effectively demonstrate certain features as well as to protect all parties involved. The data should not be used for any project work and may not represent actual places or things. It is prohibited to redistribute this data beyond your personal use as a component of training.

A Practical Guide to Carlson Survey 2016

Introduction

Congratulations on choosing this course to help you learn how to use Carlson Survey 2016. The term “practical” is used in the title because this course focuses on what you need to effectively use Carlson Software, and does not complicate your learning experience with unnecessary details of every feature in the product.

Each lesson contains the concepts and principles of each feature to provide you with the background and foundation of knowledge that you need to complete the lesson. You then work through real world exercises to reinforce your understanding and provide you with practice on common tasks that other professionals are performing with Carlson Survey in the workplace every day.

You can take the lessons in this course in whatever order is appropriate for your personal needs. If you want to concentrate on specific features, the lesson for those features does not require that you complete prior lessons. With this course organization, you can customize your own individual approach to learning Carlson Survey.

When you complete this course, you will have the background and knowledge to apply Carlson Survey to your job tasks, and become more effective and productive in your job.

Course Objectives

The objectives of this course are performance based. In other words, once you have completed the course, you will be able to perform each objective listed. If you are already familiar with Carlson Software, you will be able to analyze your existing workflows, and make changes to improve your performance based on the tools and features that you learn and practice in this course.

After completing this course, you will be able to:

- Navigate the Pull-down Menus and Ribbon Menus
- Set up Carlson Software to use the Project approach
- Utilize various COGO tools
- Enter Raw Survey Data at the Command Prompt
- Enter Raw Survey Data in the Carlson Raw Data Editor
- Adjust a Traverse with Compass and Angle Balance
- Adjust a Traverse with Carlson SurvNet
- Enter Deed Data to Create a Deed File
- Perform a Deed Correlation with Field Data
- Create and Edit Lots and Areas
- Utilize Carlson LotNet to Generate Lots and Setbacks
- Edit and Annotate LotNet Lots
- Setup Field to Finish Codes and Generate 2D and 3D Geometry
- Utilize Various Critical Coordinate File Utilities
- Utilize the Point History to Record all Edits to Coordinate Files
- Use Special Linetypes for Map Creation

Prerequisites

Before starting this course, you should have a basic working knowledge of CAD. While a deep understanding of all CAD functionality is not required, but you should be able to:

- Pan and Zoom in the drawing screen.
- Describe what layers are and change the current layer.
- Create basic CAD geometry, such as lines, polylines and circles.
- Use Object Snaps.
- Describe what blocks are, and how to insert them.
- Perform basic CAD editing functions such as Erase, Copy, and Move.

If you are not familiar with these functions, you can refer to the Help system throughout the course to gain the fundamental skills needed to complete the exercises.

This text builds on the foundation of knowledge established in *A Practical Guide to Carlson Software Fundamentals 2016*. While a mastery of the material in that book is not mandatory to the successful completion of this text, it is highly recommended as a prerequisite to this courseware. Those topics include:

- Working with Points and Point Data
- Managing Point Groups
- Working with Surfaces
- Generating and Labeling Contours
- Performing Basic Drawing and Editing in CAD
- Importing and Exporting Land XML Data
- Working with Google Earth and World files
- Generating Linework Labels

Conventions

The course uses the following icons and formatting to draw your attention to guidelines that increase your effectiveness in Carlson Software, or provide deeper insight into a subject.

The magnifying glass indicates that this text provides deeper insights into the subject.

The compass indicates that this text provides guidance that is based on the experience of other users of Carlson Software. This guidance is often in the form of how to perform a task more efficiently.

Downloading and Installing the Datasets

In order to perform the exercises in this book, you must download a zip file and install the datasets.

Type the address below into your web browser to download the dataset.

www.cadapult-software.com/datasets/APG_SURVEY2016.zip

Unzip the Files

Unzip the file **APG_SURVEY2016.zip** directly to the C drive. The dataset will be copied to the folder:

C:\Carlson Projects

A folder called **APG Survey 2016 Data** is created that contains several folders with source data for the exercises in this book.

There are folders called **APG Survey 2016 Chapter X** These folders contain project files and drawings that are used to start the corresponding Chapters.

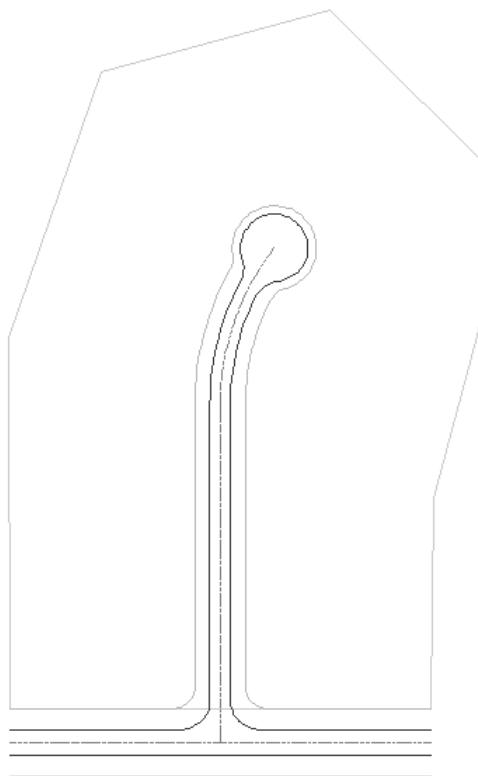
There are also folders created called **APG 2016 Lesson X_X** These folders contain project files and drawings where the lesson number of the folder corresponds to the lesson numbers in the book. This will allow you to jump in at the beginning of many of the lessons in the book, and do just the specific exercises that you want, if you do not have time to work through the book from cover to cover.

Exercises

The exercises in this course have been designed to represent common tasks that are performed by civil engineers, surveyors, designers and drafters. The data included in the exercises are typical drawings, point files and other data used by professionals like you. Exercises provide higher level process information throughout the exercise tasks. You are given information about not only what to do, but why you are doing it. Many images are included to help guide you.

Table of Contents

Chapter 1	A First Look at Carlson Survey 2016	1
1.1	Lesson: A Guided Tour through the Pull-down Menus	2
1.2	Lesson: A Guided Tour through the Ribbon Menus	14
Chapter 2	Working with Coordinate Geometry and Survey	19
2.1	Introduction to Coordinate Geometry.....	20
2.2	Lesson: Setting up and Configuring Carlson Survey	24
2.2.1	Setting up Carlson Survey to Work with External Data	28
2.2.2	Create a New Drawing	33
2.2.3	Configure General Settings and Points Default Settings	35
2.3	Lesson: Two Methods for Entering Field Survey Data	38
2.3.1	Entering Traverse and Side Shot Data Using Carlson COGO.....	42
2.3.2	Entering Data Using the Carlson Raw Data Editor	50
2.4	Lesson: Adjusting and Modifying Field Data.....	54
2.4.1	Adjusting a Traverse.....	55
2.5	Lesson: Entering Deeds and Record Information.....	60
2.5.1	Setting up Deed Defaults.....	62
2.5.2	Entering Record Deed Information.....	63
2.6	Lesson: Creating a "Fit"	71
2.6.1	Creating New Points for Record Locations	72
2.6.2	Making an Initial Analysis of Field vs Record Data	75
2.6.3	Deed Correlation	76
Chapter 3	Data Collectors and Post Processing	83
3.1	Lesson: Introduction to Data Collectors	84
3.1.1	Working with the Data Collector Programs	88
3.2	Lesson: Working with the Raw Data Editor.....	92
3.2.1	Processing, Editing and Reporting a Traverse Closure	93
3.3	Lesson: SurvNET	99
3.3.1	Creating a SurvNET Project	107
3.3.2	Processing Data With SurvNET	113
3.3.3	Adding Additional Traverse Data.....	119
3.3.4	Constraining the Network	121
3.3.5	Add Sideshot Ellipses.....	124
3.3.6	Generating Final Coordinates	125


Chapter 4 Area/Layout	129
4.1 Lesson: Offsets, Intersections and Cul-De-Sacs.....	130
4.1.1 Creating Right of Way and Offset Lines	133
4.1.2 Creating a Cul-De-Sac.....	135
4.2 Lesson: Creating and Sizing Lots.....	138
4.2.1 Creating Lots.....	140
4.2.2 Resizing Lots with Hinged Area	141
4.2.3 Resizing Lots with Sliding Side Area	142
4.2.4 Modify a lot by using AutoCAD Grips.....	143
4.3 Lesson: Lot Areas, Annotations and Setback Lines	145
4.3.1 Setting the Area Defaults	147
4.3.2 Annotating the Lot Areas	152
4.3.3 Setting up the Auto Annotate by Layer defaults Geometry (<i>by Layers</i>)	153
4.3.4 Alternate Setup - Load the Supplied Default Settings.	177
4.3.5 Annotating the Plan.....	180
4.3.6 Cleaning up The Annotations.....	181
4.3.7 Creating Setback Lines	189
Chapter 5 LotNET	191
5.1 Lesson: The Automated Process of Creating Lots and Roadways.....	192
5.1.1 Setting up LotNET	194
5.1.2 Designing a Subdivision.....	198
5.2 Lesson: Modifications and Redesign.....	206
5.2.1 Modifying Lots Created by LotNET	208
5.2.2 Storing your design as an external .LOT file.....	219
5.3 Lesson: Annotations, Cleanup and Subareas	223
5.3.1 Annotating the Subdivision	224
5.3.2 Renumber Lots.....	226
5.3.3 Sub-Areas	226
Chapter 6 Working with Field to Finish.....	231
6.1 Lesson: Introduction to Field to Finish.....	232
6.2 Lesson: Setting up Field to Finish Codes and Settings.....	235
6.2.1 Creating a New Drawing for Field to Finish	240
6.2.2 Creating a Field to Finish Code File (.FLD file).....	242
6.2.3 Creating/Editing a Field to Finish Code	246
6.2.4 Setting the Special Codes.....	254

6.3 Lesson: Drawing with Field to Finish	258
6.3.1 Drawing Field to Finish Entities	261
6.4 Lesson: Using the Field to Finish Inspector	263
6.4.1 Using the Field to Finish Inspector	265
6.5 Lesson: An Example of What Can be Done with Field to Finish	267
6.5.1 Putting it all Together.....	269
Chapter 7 Ten More Essential Tools.....	277
7.1 Lesson: Using the Carlson Survey Inverse Command	279
7.1.1 Inverse Between Two Points	281
7.2 Lesson: Creating a Coordinate File from an Existing Drawing	284
7.2.1 Update CRD from Drawing.....	286
7.3 Copying or Merging Two Coordinate Files.....	290
7.3.1 The Copy/Merge CRD File Command	292
7.3.2 Updating the Drawing	296
7.4 Lesson: Creating a Point Comparison Report	298
7.4.1 Creating a Point Comparison Report	300
7.5 Lesson: Point History and the QA/QC of Coordinate Files	303
7.5.1 Reviewing Point History.....	304
7.6 Lesson: Aligning Geometry to Points.....	313
7.6.1 The 2D Align Command	314
7.7 Lesson: Calculating Curves	317
7.7.1 Using Curve Calc.....	319
7.7.2 Plotting a Curve	320
7.8 Lesson: Creating and Editing Polylines	322
7.8.1 Using Join Nearest	325
7.8.2 Editing Polylines	325
7.9 Lesson: Drawing Special Line Types.....	330
7.9.1 Change Polyline Linetype.....	332
7.9.2 Create a Tree Line.....	334
7.10 Lesson: Legal Description Writer	335
7.10.1 Creating a Legal Description	342

4.1 Lesson: Offsets, Intersections and Cul-De-Sacs

Introduction

Much time is often spent creating roadways and cul-de-sacs. In this lesson you will learn how to utilize some of Carlson's design commands to highly automate these processes and work much more efficiently.

Key Concepts

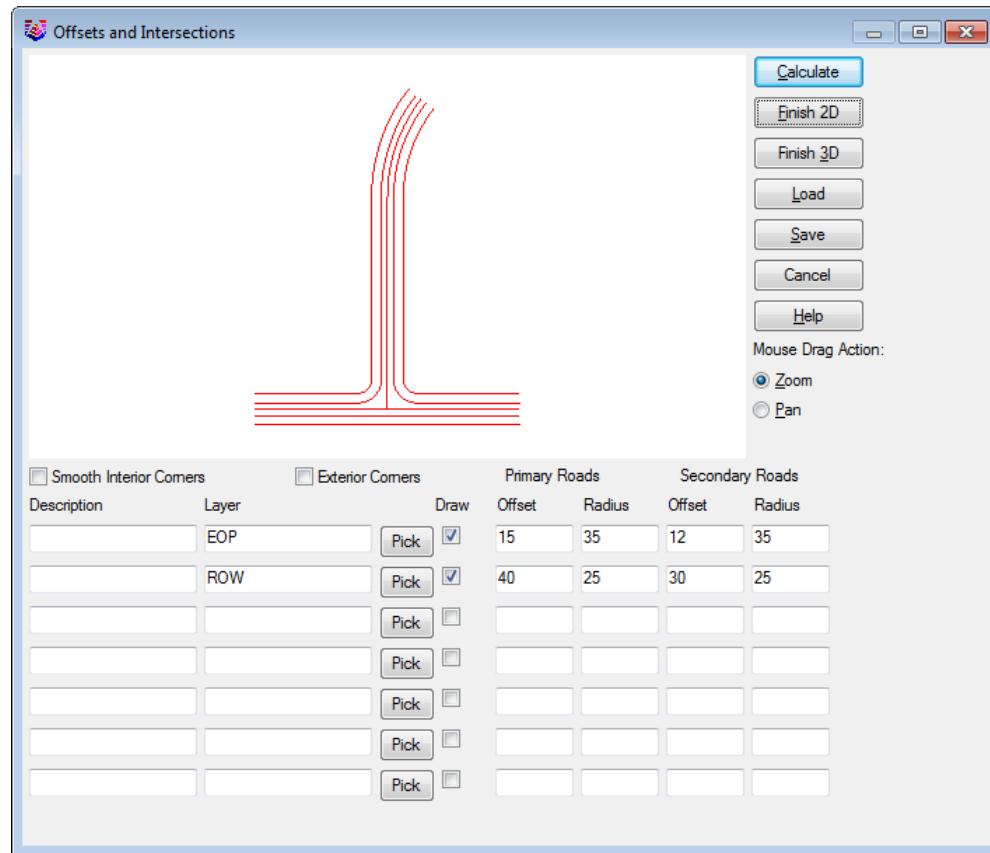
- Creating offsets and intersections
- Creating cul-de-sacs

Objectives

After completing this lesson you will:

- Be able to efficiently create drawing geometry for roadways and cul-de-sacs using Carlson tools.

Introduction

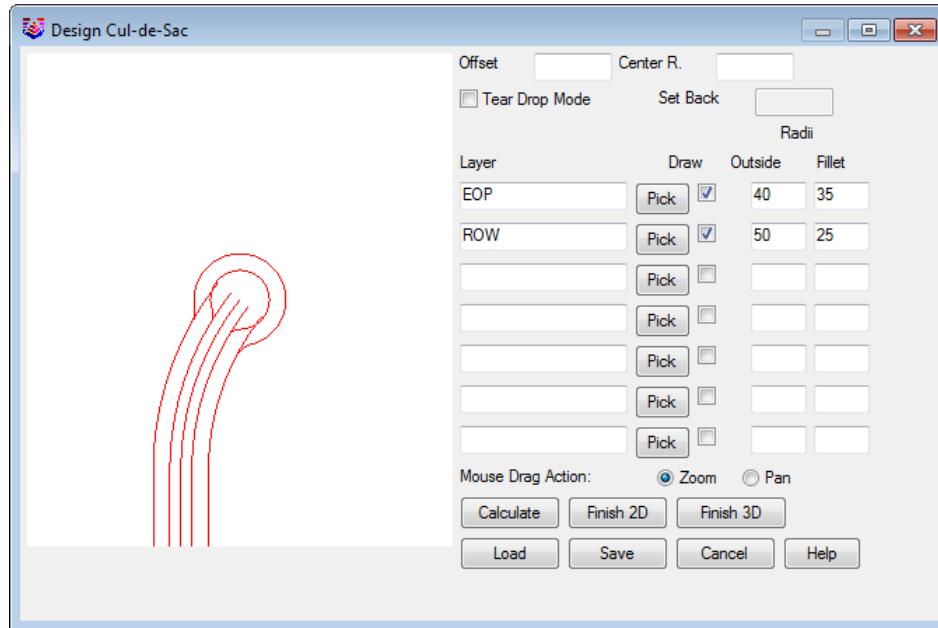

For the surveyor, calculating lot lines within an existing boundary can be a tedious and time consuming task. In days not so long ago, a surveyor or design engineer would sit and "number crunch" entering in COGO commands like bearing/bearing intersections or bearing/distance intersections to create lines, arcs and offsets.

In today's CAD climate, you have graphic tools that can perform those same tasks in a fraction of the time. However, the design of a subdivision (*Roads and Lots*) is still a constantly changing environment, with modifications from clients, overlaying regulations and budget constraints.

It is imperative to learn the many methods of designing a subdivision utilizing every tool available to ensure that the process is completed as quick and accurate as possible and that the inevitable revisions can be made easily.

It is important to mention that in a later chapter, you will be introduced to a powerful program called LotNET. LotNET combines all of the steps in creating roads and lots, automates the process and ties it directly to other civil design programs such as RoadNET.

Offsets and Intersections


The *Offsets and Intersections* layout utility automates the process of creating geometry for roads, including intersections, based on selected centerlines.

The *Layer* column is the layer on which each offset will be created. In this case the default is **EOP** (edge of pavement) and **ROW** (right of way).

The Primary Roads column has two sub columns: **Offset** is the offset distance from the centerline for the corresponding layer. **Radius** is the return radii created at each intersection of roads for the corresponding layer.

The Secondary Roads columns are set up identically to the primary roads. Additional offsets and layers may be created as desired.

Design Cul-de-Sac

The *Design Cul-de-Sac* layout utility automates the process of creating geometry for Cul-de-Sacs. Similar to the Offsets and Intersection dialog box, this dialog box is where you set the desired geometric properties for the cul-de-sac.

The **Offset** field is for creating an offset cul-de-sac. The offset is calculated from the picked point in the previous step and is measured perpendicular to the incoming tangent bearing.

The **Center R.** creates an island at the center of the cul-de-sac at the specified radius.

Tear Drop Mode creates a tear drop style cul-de-sac at the specified Set Back.

Under the **Radii** column:

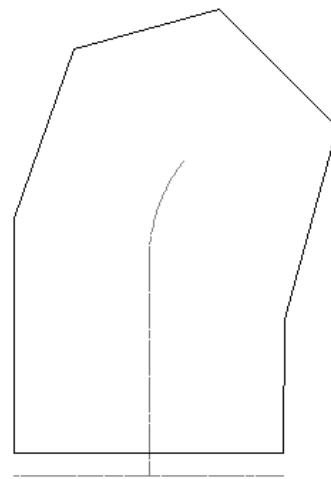
Outside specifies the outside radius for each of the corresponding layers

Fillet specifies the return radii where the cul-de-sac meets the incoming offset lines

Exercises: Create Right of Ways and a Cul-De-Sac

Creating right of way lines and cul-de-sacs can be done easily by setting factors like offset widths and radii in the Carlson Offset and Intersection command.

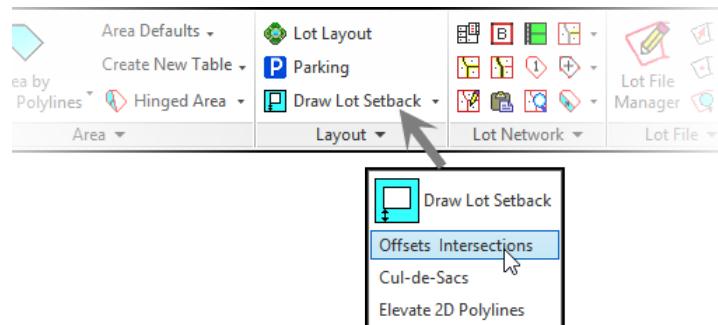
You do the following:

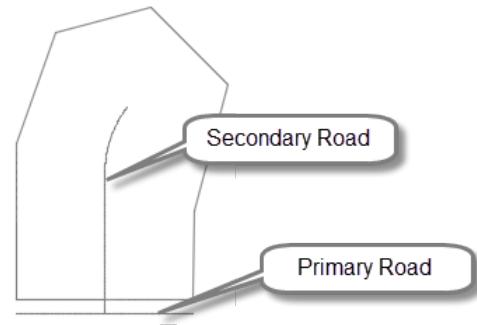

- Open a supplied drawing
- Create Right of Way lines from centerlines
- Create a Cul-de-Sac

4.1.1 Creating Right of Way and Offset Lines

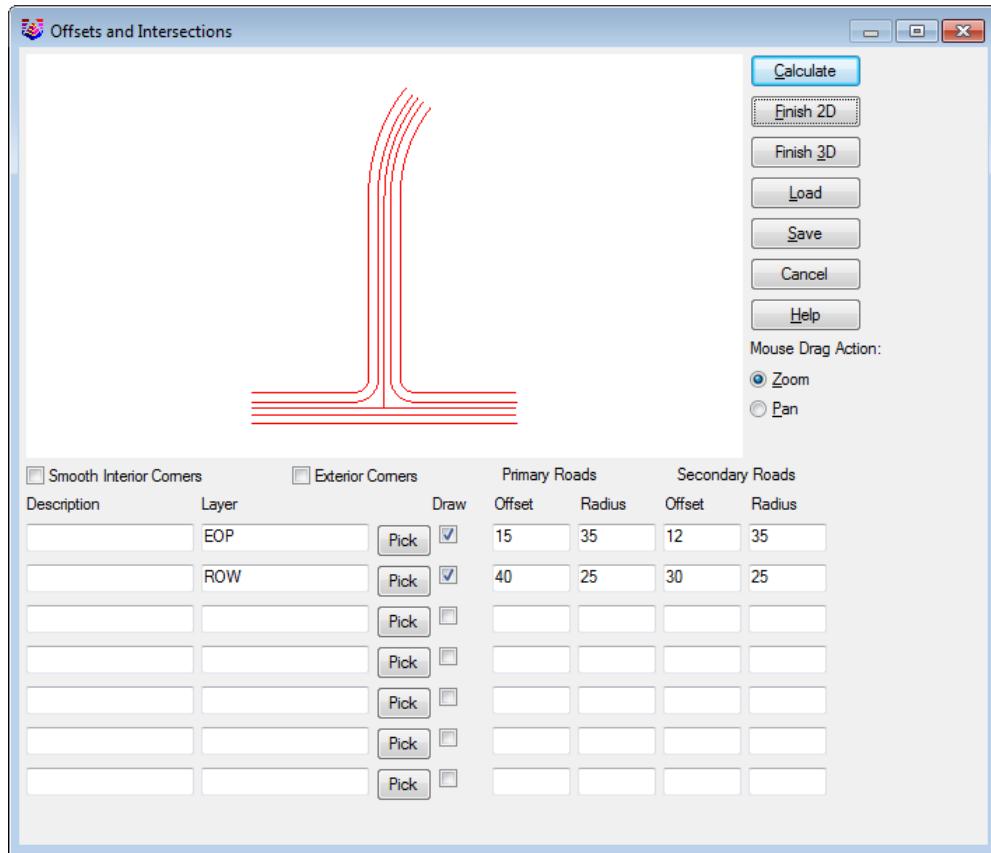
In this exercise you will create right of way and edge of pavement offset lines at specified distances with connecting radii. You will use the Carlson Area\Layout Utilities' Offsets and Intersections command.

1. Open the drawing: C:\Carlson Projects\APG Survey 2016 Chapter 4\DWGS\Lots.dwg


The drawing file contains a perimeter boundary line and two centerlines.


2. Select Ribbon: Area/Layout \Rightarrow Layout \Rightarrow Offsets & Intersections.

Alternatively from the pull-down menu:

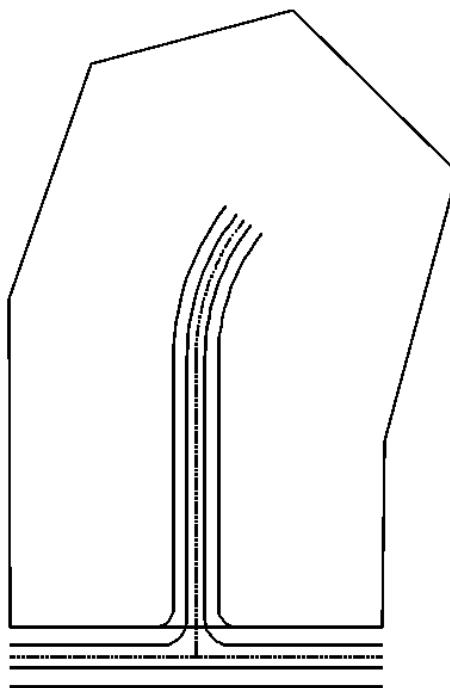

Select: Area/Layout \Rightarrow Layout Utilities \Rightarrow Offsets & Intersections.

3. At the command line prompt: *Select all PRIMARY road polylines* select the **Horizontal Polyline on the south side of the boundary**.
4. Press **[Enter]** to complete the selection.
5. At the command line prompt: *Select all SECONDARY road polylines* select the **Vertical Polyline within the boundary**.
6. Press **[Enter]** to complete the selection.

This opens the *Offsets and Intersections* dialog box.

7. Enter the offset dimensions as shown:

Primary Roads

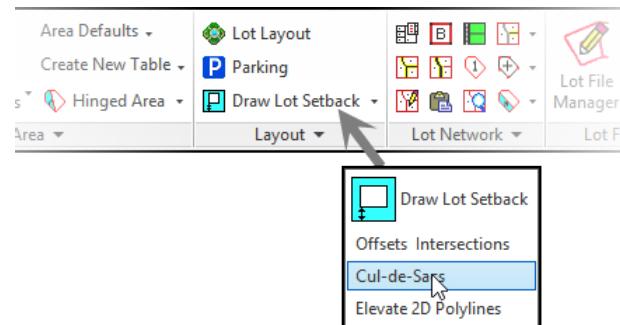

- EOP Offset 15 Radius 35
- ROW Offset 40 Radius 25

Secondary Roads

- EOP Offset 12 Radius 35
- ROW Offset 30 Radius 25

8. Click **<<Finish 2D>>**.

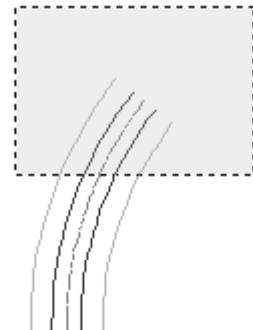
The 2D polylines representing the Right of Way and Edge of Pavement lines are placed in the drawing and look like the graphic below.


4.1.2 Creating a Cul-De-Sac

In this exercise you will attach a cul-de-sac to the dead end road centered within the boundary lines.

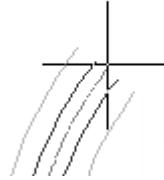
1. Continue working in the drawing from the previous exercise.
2. Select **Ribbon: Area/Layout \Rightarrow Layout \Rightarrow Cul-de-Sacs.**

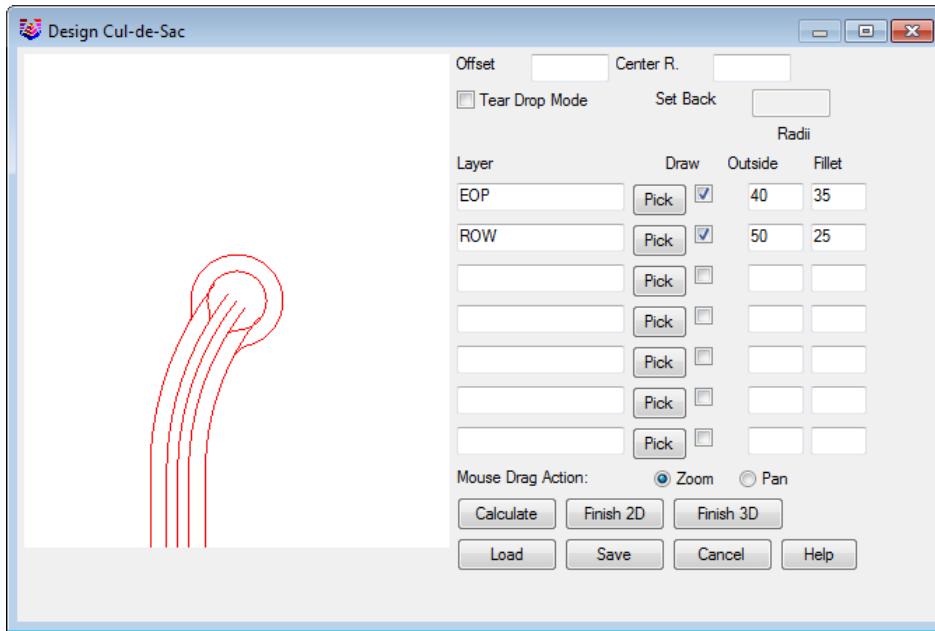
Alternatively from the pull-down menu:


Select: **Area/Layout \Rightarrow Layout Utilities \Rightarrow Cul-De-Sacs.**

3. At the command line prompt: *Select all offset polylines to end with cul-de-sac* Select by a crossing window (upper right to lower left) the 5 lines at the end of the roadway.

4. Press **[Enter]** to complete the selection set.


These are the lines created in the previous step that correspond to ROW and EOP as well as the original centerline.

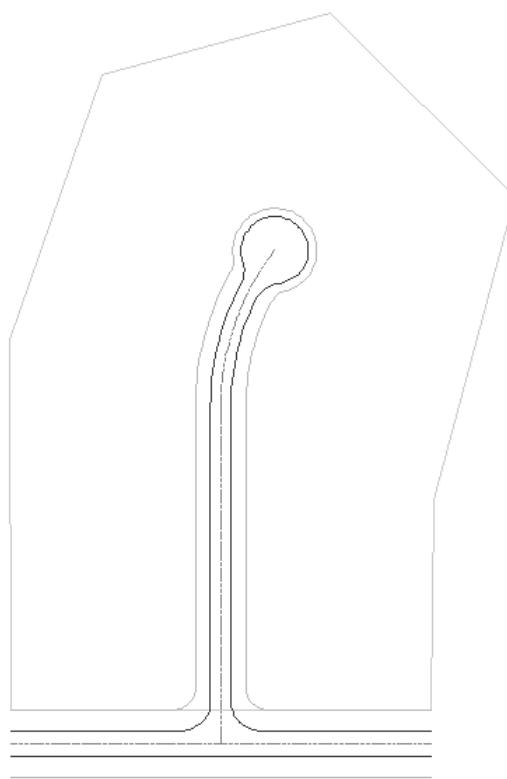

5. At the command line prompt: *Pick cul-de-sac center projection onto centerline*: Select the **End Point** at the end of the centerline.

This represents the base point of the cul-de-sac.

 Note the **End Point** object snap is provided by the program automatically.

This opens the *Design Cul-De-Sac* dialog box.

6. Set the EOP **Outside** offset to **40**.


7. Set the EOP **Filet** to **35**.

8. Set the ROW **Outside** offset **50**.

9. Set the ROW **Filet** to **25**.

Note: It is important the layers used are the same as those in the previous exercise.

10. Click <<Finish 2D>>.

The resulting cul-de-sac is placed in the drawing and is connected to the previous entities to create a continuous polyline.

11. **Save** the drawing.

Lesson Review:

In this lesson you created right of way lines, edge of pavement lines and a cul-de-sac all from two existing centerlines.