Copyright

Copyright © CADapult Press, Inc. 2014

All rights reserved. No part of this publication may be reproduced in any form, or by any means electronic, mechanical, recording, photocopying, or otherwise, without written permission from the publisher, except for brief quotations used in reviews, or for marketing purposes specific to the promotion of this work.

ISBN: 978-1-934865-18-7

Although CADapult Press has made every attempt to ensure the accuracy of the contents of this book, the publisher and author make no representations or warranty with respect to accuracy or completeness of the contents in this book, including without limitation warranties of fitness for a particular purpose. The datasets included in this book are for training purposes only.

Autodesk screen shots reprinted with the permission of Autodesk, Inc.

Autodesk, AutoCAD, DWG, the DWG logo, Civil 3D and AutoCAD Map 3D are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries. All other trademarks are the property of their respective owners.

Published in the United States of America by:
CADapult Press
(503) 829-8929
books@cadapult-software.com

Printed and manufactured in the United States of America
About the Authors

Rick Ellis has worked with and taught AutoCAD Civil 3D, along with Map 3D and other Autodesk products since the mid-90s. He is the Author of several critically acclaimed books on AutoCAD Civil 3D, Map 3D and Land Desktop.

Rick continues to use AutoCAD Civil 3D on projects in a production environment, in addition to teaching classes to organizations both large and small.

This practical background and approach has made him a highly rated speaker at Autodesk University, a member of the national speaker team for the AUGI CAD Camps and a sought after instructor by organizations around the world.

Rick can be reached at: rick@cadapult-software.com

Russell Martin is an independent spatial data consultant who has worked with CAD, GIS and cartographic design tools since 1985. He has taught AutoCAD and AutoCAD Map 3D in small classrooms and at large events such as Autodesk University. Russell has co-authored several books on AutoCAD Map 3D, and has served as technical editor of many other books on CAD, computer graphics, Land Desktop and Civil 3D.

Russell also performs graphic design, production mapping and GIS analysis services for a diverse client base, both public and private. He uses AutoCAD, Map 3D and Civil 3D tools on a daily basis, and strives to produce maps and graphics which clearly communicate complex quantitative data.

Russell can be reached at: russell@cadapult-software.com

Exercise Data

CADapult Press would like to thank the City of Springfield, Oregon for providing the data for this book. The dataset provided is for illustration purposes only. While it is based on real world information to add relevance to the exercises, it has been altered and modified to more effectively demonstrate certain features as well as to protect all parties involved. The data should not be used for any project work and may not represent actual places or things. It is prohibited to redistribute this data beyond your personal use as a component of training.
A Practical Guide to GIS in AutoCAD Civil 3D 2015

Introduction
Congratulations on choosing this course to help you learn how to use GIS in AutoCAD Civil 3D 2015. The term “practical” is used in the title because this course focuses on what you need to effectively use the GIS tools in AutoCAD Civil 3D 2015, and does not complicate your learning experience with unnecessary details of every feature in the product. Should you want to pursue aspects of features and functionality in greater detail than provided in this course, you are directed and guided to that information.

Each lesson contains the concepts and principles of each feature to provide you with the background and foundation of knowledge that you need to complete the lesson. You then work through real world exercises to reinforce your understanding and provide you with practice on common tasks that other professionals are performing with AutoCAD Civil 3D 2015 in the workplace every day.

You can take the lessons in this course in whatever order is appropriate for your personal needs. If you want to concentrate on specific features, the lesson for those features does not require that you complete prior lessons. With this course organization, you can customize your own individual approach to learning AutoCAD Civil 3D.

When you complete this course, you will be armed with the background and knowledge to apply AutoCAD Civil 3D to your job tasks, and become more effective and productive in your job.

Course Objectives
The objectives of this course are performance based. In other words, once you have completed the course, you will be able to perform each objective listed. If you are already familiar with AutoCAD Civil 3D, you will be able to analyze your existing workflows, and make changes to improve your performance based on the tools and features that you learn and practice in this course.

After completing this course, you will be able to:

- Work with coordinate systems
- Clean drawings with common geometry errors
- Insert rectified raster images
- Work with a variety of attribute data
- Apply object classification to your mapping system
- Import GIS data from a variety of sources
- Create surfaces and pipe networks directly from GIS data
- Export geometry and attribute data to other GIS formats
- Export Civil 3D objects to other GIS formats
- Connect directly to GIS data
- Connect to raster surface data
- Attach and query source drawings
- Save changes to attached source drawings
- Extract data for reports and quantity takeoffs
- Create, manage and analyze topologies
- Produce sophisticated map books
Prerequisites
Before starting this course, you should have a basic working knowledge of AutoCAD. A deep understanding of AutoCAD is not required, but you should be able to:

- Pan and Zoom in the AutoCAD drawing screen.
- Describe what layers are in AutoCAD, and change the current layer.
- Create basic CAD geometry, such as lines, polylines and circles.
- Use Object Snaps.
- Describe what blocks are, and how to insert them.
- Perform basic CAD editing functions such as Erase, Copy, and Move.

If you are not familiar with these functions, you can refer to the AutoCAD Help system throughout the course to gain the fundamental skills needed to complete the exercises.

Conventions
The course uses the following icons and formatting to draw your attention to guidelines that increase your effectiveness in AutoCAD Civil 3D, or provide deeper insight into a subject.

🔍 The magnifying glass indicates that this text provides deeper insights into the subject.

🔍 The compass indicates that this text provides guidance that is based on the experience of other users of AutoCAD Civil 3D. This guidance is often in the form of how to perform a task more efficiently.

⚠️ The warning indicates that a specific exercise might not function properly on 64 bit operating systems.
Exercises
The exercises in this course have been carefully chosen and designed to represent common tasks that are performed by mapping and GIS professionals. The data included in the exercises are typical drawings and maps used by local governments and municipalities. You work with road networks, parcel maps, sewer collection systems, water distribution systems, aerial photos, raster surfaces, and much more.

Exercises provide higher level process information throughout the exercise tasks. You are given information about not only what to do, but why you are doing it. In most cases, an image is included to help guide you.

Installing the Datasets
The CD included with this book contains all of the datasets required for the exercises.

There are two ways to install the dataset:
- Use the Setup.exe.
- Unzip the files.

Use Setup.exe
Double click setup.exe and follow the instructions for installation.

Unzip the Files
Unzip GIS in Civil 3D Training.zip directly to the C drive. The zip file will create the following folder structure:

C:\A Practical Guide\GIS in Civil 3D 2015\Chapter Number\Files for Exercises

64 Bit Database Drivers
On 64 bit systems, exercises that require a connection to an ODBC database need to have the proper drivers from Microsoft installed. If your system does not have these installed, you can download them from Microsoft. Go to [http://www.microsoft.com] and search for Microsoft Access Database Engine.
3.5 Lesson: Attaching External Databases ... 84
 3.5.1 Attaching External Databases .. 88
3.6 Lesson: Working with Data View .. 89
 3.6.1 Navigating in the Data View Table ... 92
 3.6.2 Applying SQL Filters .. 93
3.7 Lesson: Defining a Link Template and Generating Links .. 98
 3.7.1 Defining a Link Template .. 104
 3.7.2 Attaching Database Data to Existing Objects .. 105
 3.7.3 Attaching Database Data While Digitizing .. 107
 3.7.4 Generating Links to Existing Blocks .. 110
 3.7.5 Highlighting objects by selecting records ... 111
 3.7.6 Highlighting table records by selecting objects .. 112
 3.7.7 Using Spatial Filters ... 113
3.8 Lesson: Establishing the Dynamic Annotation Environment .. 115
 3.8.1 Defining an Annotation Template .. 119
3.9 Lesson: Inserting and Managing Dynamic Annotation ... 122
 3.9.1 Annotating Objects .. 125
 3.9.2 Annotating Multiple Values ... 126
 3.9.3 Updating Annotation ... 129
 3.9.4 Rotating Annotation to Align with Objects .. 130
 3.9.5 Adding Text to Annotation Expressions .. 132
 3.9.6 Adding the Inch Symbol (") ... 133
 3.9.7 Adding Length to the Annotation Template .. 134
 3.9.8 Controlling Precision .. 136

Chapter 4 Object Classification .. 139
4.1 Lesson: Creating Object Classification Definition Files and Object Classes 140
 4.1.1 Log in as SuperUser ... 145
 4.1.2 Create a New Definition File ... 146
 4.1.3 Define an Object Class .. 147
4.2 Lesson: Classifying Existing Objects and Validating Standards .. 152
 4.2.1 Classifying Existing Objects .. 156
 4.2.2 Validating Classified Objects ... 157
4.3 Lesson: Creating New Classified Objects ... 158
 4.3.1 Creating New Classified Objects .. 160
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Importing and Exporting</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Lesson: Importing GIS Data</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>5.1.1 Importing an ArcInfo Coverage</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>5.1.2 Importing Polygons from an ArcView Shapefile</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>5.1.3 Creating Centroids</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>5.2 Lesson: Exporting GIS Data</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>5.2.1 Exporting Polygons to a SHP file</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>5.2.2 Export to and SDF File</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>5.3 Importing GIS Data as Civil 3D Objects</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>5.3.1 Creating a Surface from a Shapefile</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>5.3.2 Creating a Pipe Network from a SHP</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>5.4 Exporting Civil 3D Objects as GIS Data</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>5.4.1 Exporting Civil 3D Objects to an SDF File</td>
<td>204</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Connecting to Feature Sources</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Lesson: Feature Source Concepts</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>6.2 Lesson: Connecting to SDF and SHP</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Connect to and Add SDF Data</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Connect to and Add SHP Data</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>6.3 Lesson: Working with Feature Layers</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Working with Feature Layers</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>6.4 Lesson: Connecting to ODBC Point Feature Sources</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>6.4.1 Create a System DSN</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>6.4.2 Connect to a DSN, and Add Points to a Map</td>
<td>234</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Using Raster Images in Maps</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Lesson: Inserting Raster Images</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>7.1.1 Inserting a Correlated Image</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>7.2 Lesson: Managing Raster Images</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Adjust Image Display Properties</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>7.2.2 Clipping Images</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>7.3 Lesson: Connecting to Raster and Raster Surfaces</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>7.3.1 Connecting to an Aerial Photo</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>7.3.2 Connecting to a Raster Surface</td>
<td>258</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Stylizing Features</th>
<th>261</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Lesson: Stylizing Lines, Points, and Polygons</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>8.1.1 Stylizing Polygon Features</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>8.1.2 Stylizing Line Features</td>
<td>271</td>
<td></td>
</tr>
</tbody>
</table>
5.1 Lesson: Importing GIS Data

Introduction
Importing GIS file formats into Civil 3D opens the door to a tremendous amount of data. Much of this data is free, and can be integrated into your mapping system. In this lesson, you begin by learning the formats and types of data that can be imported into Civil 3D, and guidelines around integrating other mapping data into your mapping system. You then import an ArcView SHP file into Civil 3D.

Key Concepts
Concepts and key terms covered in this lesson are:

- Import
 - Geometry
 - Attributes
 - Coordinate Systems
- Import dialog box

Objectives
After completing this lesson, you will be able to:

- Describe what Map Import is.
- List the components that can be imported, and how Civil 3D interprets incoming data.
- Identify and explain the tools used to import GIS data.
- Import street segments with Object Data.
- Import zoning polygons with an external data source.
About Importing GIS Data into Civil 3D

GIS Data generally contains three types of data: geometry, attributes, and the coordinate system it was created in. Using the map import tools, you can define how Civil 3D interprets and imports all three types of data.

The Map Import commands are used to convert other GIS formats into AutoCAD objects with attributes. These new AutoCAD objects are saved in the drawing file, with no link to the original GIS source.

Civil 3D can also connect to data as a feature source and work with these files in their native format. This functionality is covered in another lesson.

Geometry

All GIS formats are different. Civil 3D imports the data in such a way as to represent the native format as closely as possible. An example of this functionality is when importing line data from an ArcView shape file, any segments in the incoming file that have vertexes are imported as polylines, while those that are simple lines with a start and endpoint are imported as lines.

Points can be imported as either AutoCAD points, or blocks that are defined in the drawing.

Attributes

Attributes that are associated with incoming data can be mapped to Object Data, or can be imported to an attached data source, such as a Microsoft Access database table, and linked to the objects at the same time.

Coordinate Systems

If the incoming file has coordinate system information associated with it, either within the file itself, or a companion file, Civil 3D will read this information and convert the coordinates to the target drawing file. If there is no coordinate system information in the incoming file, you can assign a coordinate system to it during the import procedure.

Spatial Filters

Some GIS applications can manage larger data sets than can be reasonably managed within Civil 3D. Spatial filters enable you to limit the amount of data that you import based on a location in the current map.

Guidelines for Preparing for Map Import

You can start a new drawing and simply import data. In most cases, you want to prepare a target drawing with layers, Object Data tables, or attached data sources that will receive the incoming data. This is especially true if your office has mapping standards that must be adhered to, or if you are importing into an existing drawing that already has all the layers, Object Data tables, or attached data sources present.

Another important point when preparing for an import is to have some familiarity with the incoming data. This may come from metadata or documentation of some kind. The best way to qualify the incoming data is to use the native application to review. However, this is not always possible, in which case the import process might be a trial and error process until you can make the correct settings for the final import.

If you perform the same type of import regularly, you can save a profile of the settings and load the profile each time you perform an import. You can also create a drawing template that has all of the definitions such as Object Data tables, layers, blocks and so on.
The Import Interface
Once the target file is prepared, and the incoming data is qualified, the entire import procedure is performed in a single interface with various dialog boxes for the settings.
Exercises: Import Data from Other GIS Formats
In these exercises you will import street centerlines that were sent to you as an E00 file. An ArcInfo coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

Then you will, import parcel polygons from an ArcView Shapefile and convert their coordinate system.

Finally, you will create centroids and move the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.

The use of the import command is very similar for all the different types of supported GIS data file formats. However, there are some differences depending on the type of geometry that is contained in those files (points, lines, or polygons).

You do the following:

- Import streets from an E00 file.
- Import parcels from an ArcView shape file and convert its coordinate system.
- Create centroids for the parcel polygons.

5.1.1 Importing an ArcInfo Coverage

For these exercises you should be in the Planning and Analysis workspace

In this exercise you will import street centerlines that were sent to you as an E00 file. An ArcInfo coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

1. Press Ctrl + N and select the template map2d.dwt from the folder Map Book Templates, to start a new, blank drawing.

2. Select Ribbon: Insert ⇒ Import ⇒ Map Import.
Chapter: Importing and Exporting

The *Import Location* dialog box opens.

3. Set the file type to **ESRI ArcInfo Export (E00)**.

4. Browse to the **Chapter 05** folder and select **streets.e00**.

In the *Import* dialog box you can configure the *Layer*, *Coordinate Conversion*, and *Data* options that you wish to use to import the information into *AutoCAD*.

5. Ensure that the **STREETS_arc Input Layer** is selected.

6. Click on the *Drawing Layer* field in the **STREETS_arc** row, to activate the **More button <<...>>**.

7. Click the **More button <<...>>** to launch the *Layer Mapping* dialog box.
Here you can choose to import the drawing objects onto an existing layer, create a new layer, or select a column of data from the file that you are importing to determine the layer names. This last option will allow you to do some basic thematic mapping during the import of the objects. For example, if you were importing parcel data and that data set had a column for zoning. You could have the import command create a new layer for each zoning type and place each parcel on the appropriate layer for its zoning designation. (See Additional Exercises at the end of this chapter for more information).

In this exercise, you will place all of the streets on one new layer.

8. Choose the **Create on new layer** option to activate the text box.

9. Enter "Streets" for the layer name.

10. Click **<<OK>>** to return to the **Import** dialog box.

11. Click on the **Data** field in the **STREETS_arc** row to activate the **More button **<<...>>**.

12. Click the **More button **<<...>>** to launch the **Attribute Data** dialog box.

Here you specify what attribute data to import and where to store it. You can enter the desired name for the **Object Data Table** and select the desired fields to import. This is the step that allows you to bring the intelligence of the GIS file along with the geometry into AutoCAD. By creating the object data table and populating it with the information provided in the coverage you will be able to click on a street and find the street name, type, speed limit, and any other information that was added by the GIS department. This will
also allow you to edit the geometry and data from the GIS file in AutoCAD and then export it back to any of the supported GIS formats without losing any of the attached data. If you leave the Data option set to None or Do not import attribute data, then you will only import the geometry of the file and you will lose all of the attached information.

13. Choose the Create object data option to activate the Object Data section.

14. Change the default Object Data table to use name to "Streets".

15. Click <<Select Fields>>.

Here you specify which fields to import into the Object Data table.

16. Deselect all Input Fields except NAME_FULL, TYPE, SPEED, OWNER, PAVED, and FCLASS.

You only need to import the fields that you want to have available. So if there is extraneous data that you don’t need, you can skip it and keep the file size smaller.

It is also important to understand that many GIS programs store geometric data, like length and area, in data tables, while in AutoCAD the geometry is a physical property of the object. In this example, if you were to import the length field, it would be a static value in the object data table and would not update if the length of the line is altered.

17. Click <<OK>> to dismiss the Object Data Mapping dialog box.

18. Click <<OK>> to dismiss the Attribute Data dialog box.

19. Click <<OK>> in the Import dialog box to import the file.

The streets are imported into the drawing as polylines, with the GIS data attached as Object Data.

20. Once the 287 objects are imported, zoom to Extents.

22. Pick a line segment anywhere in the drawing.

Here, you can view the object data associated with the line segment you picked. You can also change the value of any field in this object’s data, or even add a record to a new or existing object. It is also possible to view and edit object data using the AutoCAD Properties command.

23. View the object data associated with a few other line segments.

24. Click <<Cancel>> once you are through viewing the fields, to avoid saving any inadvertent changes.

25. Save the drawing as “Streets” in the Chapter 05 folder
5.1.2 Importing Polygons from an ArcView Shapefile

For this exercise you should be in the Planning and Analysis workspace.

In this exercise you import parcel polygons from an ArcView Shapefile. This Shapefile geometry resides in a different coordinate system, and will be converted during the import process.

1. Open City Taxlots OD.dwg from the Chapter 05 folder.

This drawing contains the city taxlots file that you worked with in previous chapters, with the Taxlot attribute data as object data.

The county taxlots you are about to import are in a different coordinate system, which Civil 3D will convert during the import process. The first step is to assign the correct coordinate system to the base map.

2. Select Ribbon: Map Setup ⇒ Coord System ⇒ Assign.

3. Click <<Select Coordinate System>> in the Current Drawing section, to open the Coordinate System - Assign dialog box.
4. From the **Category** list, select **USA, Oregon**.

5. From the list, select **OR-S NAD27 Oregon State Planes (Polyconic), South Zone, US Foot**. Notice the column of codes on the left, and that the code for the selected coordinate system is OR-S. Once you become familiar with commonly used coordinate systems in your region, you can learn the short codes and simply enter them in the **Coordinate System - Assign** dialog box.

6. Click **<Assign>>** to assign the **Global Coordinate System**.

The drawing is now identified with the **NAD 27 State Plane** coordinate system - no conversion has occurred, you have simply assigned that coordinate system to this drawing. The **Ribbon** now displays the **Geolocation** tab.

Next, you will import the county GIS data, which is in a different coordinate system, and **Civil 3D** will convert it to this coordinate system.

7. Select **Ribbon: Insert ⇒ Import ⇒ Map Import**.

The **Import Location** dialog box opens.

8. Set the file type to **ESRI Shapefile (*.shp)**.

9. Navigate to the **Chapter 05** folder and select **TL_C_83**.

10. Click **<<OK>>** to launch the **Import** dialog box.
Here you specify all import parameters.

11. Click on the **Drawing Layer** field in the TL_C_83 row to activate the **More button <<...>>**.

12. Click the **More button <<...>>** to open the **Layer Mapping** dialog box.

13. Choose the **Create on new layer** option to activate the text field.

14. Enter **Taxlot_County** for the new layer name.

15. Click **<<OK>>** to return to the **Import** dialog box.
Notice that the Current drawing coordinate system (the base map into which you are now importing this ESRI Shapefile) is in NAD27, which you set at the beginning of this exercise.

Also notice that the Input Coordinate System is showing OR83-SF, which is the code for NAD83 Oregon State Planes (Polyconic), South Zone, US Foot. Civil 3D is getting this information from the .PRJ file, that accompanies the .SHP file. This file contains the coordinate system information. When you acquire shapefiles from others, always ask for coordinate system information. If there is not an accompanying .PRJ file, but the coordinate system is known, you could use the More button <<…>> in the Input Coordinates field to select it manually.

16. Click on the Data field to activate the More button <<…>>.

17. Click the More button <<…>> to open the Attribute Data dialog box.

18. Choose the Create object data option to activate the External Database section.

19. Select Parcels from the Object data table list.

The object data table exists in the City Taxlots OD drawing.

Civil 3D will add the new records to the existing object data table during the import process.

20. Click <<OK>> to return to the Import dialog box.
21. **Enable** the **Import polygons as closed polylines** option.

This will create each taxlot as a closed polyline, as opposed to a polygon object.

22. Click "<<OK>>" to import the file.

Civil 3D will process 396 objects and import them into the current drawing, and append 396 corresponding records to the attached database.

23. Zoom to Extents. Your drawing should look like this:

![Map Image]

The county parcels have been imported and converted to the coordinate system of the city taxlots drawing.

24. Save the drawing as **Regional Taxlots.dwg** in the **Chapter 05 folder**.
5.1.3 Creating Centroids

For this exercise you should be in the Planning and Analysis workspace.

In this exercise you will first create centroids and move the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.

1. Continue working in the Regional Taxlots.dwg that you created in the last exercise.

2. Freeze the Taxlots and Centroid layers to isolate the Taxlot County layer.

3. Select Ribbon: Create ⇒ Drawing Objects ⇒ Create Centroids.

![Create Centroids dialog box](image)

The Create Centroids dialog box opens.

4. In the Create Centroids in section, choose Selected only:

5. Click the select objects button.

This temporarily closes the dialog box so you can pick the objects.

6. Pick all the polygons with a crossing window and press Enter.
7. Click the New Layer button to make the layer **Centroid_County** on which to create the centroids.

8. Confirm that **ACAD_POINT** is selected in the **Create using** field.

9. Click **<<OK>>** to create a centroid for each closed polygon.

This creates a point at the geometric center of each polygon and moves the data from the polyline to the new centroid.

10. Pick one of the new centroids, then right-click and select ⇒ **Properties**.

11. In the **Properties** palette, scroll to the bottom and notice the attribute data from the SHP file is now attached to the tax lot centroids.

12. Save the Drawing.

Lesson Review

In these exercises you imported street centerlines that were sent to you as an E00 file. An **ArcInfo** coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

Then you imported parcel polygons from an ArcView Shapefile and converted their coordinate system.

Finally, you created centroids and moved the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.
7.3 Lesson: Connecting to Raster and Raster Surfaces

Introduction
Connecting to raster data as a feature source is similar to inserting images using Image Insert. In each case, the file is only referenced and not part of the drawing itself. In this lesson, you also learn the differences between these two methods and the advantages of using the feature source connection. You also learn about the tools that are used to connect to a raster image, and then connect to a raster image.

Connecting to raster surfaces is similar to connecting to raster images. The main difference is that raster surfaces contain elevation data associated with each pixel. Civil 3D uses this method for simple surface analysis and visualization as part of the feature source. In this lesson, you learn the basic concepts of raster surfaces, the types of files that you can access, and how raster surfaces can be used as part of your mapping system. You then connect to a digital elevation model, and add it to your map.

Key Concepts
Concepts and key terms covered in this lesson are:
- Raster feature sources
- Raster surfaces
- Viewing raster surfaces in 3D
- Draping raster and vectors over surfaces

Objectives
After completing this lesson, you will be able to:
- Describe what a raster feature source is.
- List the types of raster formats that can be accessed.
- Explain how raster surfaces can be used.
- Connect to an ortho photo.
- Connect to a raster surface.
- Drape vectors and raster over a raster surface.
Raster Feature Source Concepts
You can use raster data in Civil 3D through the Map Image Insert command and by connecting to raster as a feature source. There are some very powerful reasons to use a feature source connection rather than inserting raster:

- Performance
- File formats
- Coordinate conversion

Performance
The performance of raster as a feature source is much better than that of raster inserted in a drawing. In some cases this performance enables access to raster that otherwise cannot be used because of file size.

File Formats
Connecting to raster as a feature source opens a larger selection of geospatial-based file formats to work with. In addition to the formats that are offered directly in standard Civil 3D, the fact that the feature data objects (FDO) technology is open source enables developers to write additional FDO providers to access even more file formats.

The following illustration shows the file formats available in the Map Image Insert command. While it offers a wide variety of file formats to select from, when considering the geospatial specific formats, it is fairly limited.
Chapter: Using Raster Images in Maps

The following illustration shows the file formats available when connecting to raster as a feature source. The formats available through this method are especially useful for geospatial applications.

Coordinate Conversion

Connecting to raster as a feature source enables the coordinates of the raster to be converted to the coordinates of the current drawing. This is a very important distinction between connecting and inserting raster. When using Map raster insert, whatever the coordinates of the raster are determines the coordinates of your map. This is very limiting when compared to the coordinate conversion available using a raster feature source connection.

Raster Surface Concepts

When working with raster as feature sources, the process and procedures to connect and add both standard raster and raster surfaces are the same.

Both types of raster are composed of pixels. In the case of raster surfaces, each pixel has a Z value rather than a value such as grey scale or color that produces a “picture”. Civil 3D can interpret the Z values in a raster surface, and produce three dimensional views and analysis.
Raster Feature Layers
When a raster is connected to, and added to a map, the management of the feature layer is the same as that of vector based feature layers.

Working with Raster Surfaces
There are several tools available to take advantage of the elevation data that is inherent in a raster surface. These tools include creating contours, slope, aspect, and elevation analysis, draping, and assigning exaggeration values to the elevations. In this lesson, you work with draping and exaggeration.

Draping
Draping refers to vector and raster objects which adopt the three dimensional characteristics of the underlying surface. By default, when a raster surface feature layer is present in a drawing, all other feature layers, both vector and raster drape over the raster surface depending on the draw order of the feature layers.

AutoCAD objects do not drape over raster surfaces.
Exaggeration
Exaggeration can be applied to raster surfaces to create a more impactful representation of the terrain when needed.

In the following illustrations, the image on the left is a raster viewed in 3D with no exaggeration. The image on the right is the same raster surface with an exaggeration value of 3x.

Exaggeration should be used sparingly. It often dramatically misrepresents the map.

Exercises: Connecting to Raster and Raster Surfaces
In these exercises, you start in a drawing that has a parcel feature layer connected. You connect to a raster image of an ortho photo of the area of interest. You then connect to a raster surface, change the draw order, and view the map in 3D.

You do the following:

- Connect to a raster image and add it to the map.
- Change the draw order to view the parcels on top of the raster.
- Connect to and add a raster surface to the map.
- Set the draw order to drape the parcels and ortho photo over the surface.
7.3.1 Connecting to an Aerial Photo

For this exercise you should be in the Planning and Analysis workspace.

1. Open the drawing Connect to Raster.dwg from the Chapter 07 folder.

In the first series of steps, you connect to the raster image and add it to the map.

2. If the Task Pane is not visible, at the command line enter: Command: MAPWSPACE.

3. At the command line, enter ON to display the Task Pane, which includes the Display Manager.

4. In the Display Manager, confirm that the Groups button is selected.

5. In the Display Manager, click the Data button, and then select => Connect to Data….

The Data Connect palette opens. Here you can select from many different data providers or sources. In this exercise you will be connecting to a raster image file.

6. From the Data Connections by Provider list, select Add Raster Image or Surface Connection.

7. Change the Connection name: to Ortho.

8. Click the file button and browse to: C:\A Practical Guide\GIS in Civil 3D 2015\Chapter 07, and select Aerial.tif.

9. Click <<Connect>>.
10. Click <<Add to Map>>.

11. Close the **Data Connect** palette.

Notice the feature layer **Aerial** now appears in the **Display Manager**. A layer in the Display Manager is different than an **AutoCAD** layer; it is the name of a data source and where you manage its properties.

Notice the aerial photo is on top of the parcels.

12. In the **Display Manager**, select the **Draw Order** button.

The list of feature layers is displayed in the current draw order. The order these are listed in matches the feature layers in the drawing.

13. Drag the Parcels feature layer above the Aerial layer.

The first time you change the sequence of the **Display Map Draw Order** list in a drawing, an alert is displayed, informing you that the **Draw Order** list will now control the visual display of feature layers.

14. Click **Continue action and allow Draw Order to control layer position from now on**.

15. Zoom into the map to view the image with the parcels overlaid.

16. Save the drawing for use in the next exercise.
7.3.2 Connecting to a Raster Surface

In this exercise you connect to and add to the map an elevation enabled raster, or raster surface. Once the surface raster is added to the map, you change the draw order, and view the map in 3D. Any feature layer that is on top of the surface will automatically drapes over the surface.

1. Continue working in Connect to Raster.dwg from the previous exercise.

If you did not complete the previous exercise you can open the drawing Connect to Surface.dwg.

2. Connect to a Raster Surface. Repeat Steps 5-11 from the previous exercise using the following information:
 - For the Connection Name enter Elevation
 - Connect to the file Existing Ground.dem in the Chapter 07 folder

3. In the Display Manager, select Draw Order.

The list of feature layers is displayed in the current draw order. The order these are listed in matches the feature layers in the drawing.

4. Drag the feature layers to match the following order:
 - Parcels
 - Aerial
 - Existing Ground

To view the Parcels and Aerial features draped over the Existing Ground DEM feature, you need to switch the drawing editor from 2D to 3D views. The tools to switch views reside on the Map Status Bar. In the standard, out-of-the-box installation of Civil 3D, this status bar is not displayed by default. The display of the Map Status Bar is controlled by a system variable.

5. Enter MAPSTATUSBAR on the Command Line, and select <Show>.

The Drawing Status Bar now shows additional tools for some AutoCAD Map 3D functions, such as 2D / 3D Viewing, Vertical Exaggeration, Coordinate Systems and View Scale.
6. In the Drawing Status Bar, click the 3D icon. The drawing is displayed in 3D.

7. In the Status bar, for Vertical Exaggeration, select 2x. Note: It might take a few moments to optimize the layer.

8. Zoom into the drawing to view how the raster and parcels are draped over the surface raster.

9. Experiment with various Vertical Exaggeration values and 3D viewing angles.

NOTE: Be careful when applying Vertical Exaggeration, and use it sparingly. While it can help visualize terrain in relatively flat areas, it can dramatically misrepresent actual conditions.

Lesson Review
In these exercises you integrated three different sources of data. Vector based parcels, an ortho photo, and a surface. Together, these sources of data were combined to view how the parcels and the image drape over the existing ground terrain.
Index

3D Modeling Workspace 8 Digital Elevation Model 251, 275
3D Navigation 276 Display Manager 6
Add Data to a Map 216 Drafting & Annotation Workspace 8
Adding New Features 310 Drafting Settings 9
Altering Properties 385 Draping 254, 278
Anchors 36, 37 Draw Order 225, 246
Angle Data 26 Drawing Cleanup 410
Annotation Blocks 117 Drawing Locks 351
Annotation Template 117 Drive Aliases 348
Attach Object Data 59, 66, 69 Duplicate Objects 36
Attribute Data 52, 53 Dynamic Annotation 115
AutoCAD Attach 241 Edit Feature Attributes 307
AutoCAD Options 9 Edit Feature Geometry 307
AutoCommit 90 Edit Object Data 59, 75, 76, 78
Automatic Check In 308 Editing Attributes 309
Automatic Checkout 308 Editing Existing Features 310
AutoSave 9 Editing Object Data Tables 79
Best Route 428 Editing Transaction Model 391
Bitonal 239 Error Markers 420
Block Attributes 55 Export file types 180
Bulk Copy 336 Export Process 182
Cancelling Checkout 309 Exporting 179
Centroid 417 Exporting Civil 3D Objects 204
Check-In/Checkout 308 Expression Builder 301, 302
Civil 3D Workspace 8 External Data Sources 53
Classifying Existing Objects 153 External Databases 84
Clustered Nodes 36, 411 Feature Class 214
COGO Inquiry 26 Feature Filters 300
Command Line 10 Feature Joins 317
Compound Queries 363 Feature Layer 215, 222
Connecting to ODBC 229 Feature Layer Selectivity 225
Connecting to Raster 255 Feature Queries 300
Constraints 328 Feature Source 208, 211
Contextual Ribbons 5 Feature Source Connect 212, 242
Contours 279 Feature Styles 262
Convert Coordinate Systems 401 Feature Thematic Maps 291
Coordinate Conversion 253 Filter to Select 304
Coordinate Geometry 25 Flood Trace 428
Coordinate System 17, 165, 214, 231, 399 Generating Links 86, 98, 99, 101
Coordinate Tracker 18 GIS Contours 190
Correlation Files 240 Global Coordinate Systems 15
Create scale ranges 287 Grey Scale 240
Creating New Classified Objects 158 Hillshading 277
Creating New Features 309 Image Behavior 246
Crossing Objects 35, 411 Image Correlation 242
Current Drawings 347 Image Frames 246
Data Panel 395 Image Insert 241
Data Queries 377 Import Attributes 165
Data Source 85 Import Coordinate Systems 165
Data Source Name 231 Import Geometry 165
Data Table 223 Import Interface 166
Data Table Tools 224 Import Spatial Filters 165
Data View 89 Inserting Dynamic Annotation 122
Datums 15 Joins 316
Define Object Data 59 Layout Elements 442
<table>
<thead>
<tr>
<th>Legend</th>
<th>442</th>
<th>Raster Surface Styles</th>
<th>276</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Feature Styles</td>
<td>266</td>
<td>Raster Surface Themes</td>
<td>278</td>
</tr>
<tr>
<td>Link Template</td>
<td>85, 98, 99, 100</td>
<td>Raster Surfaces</td>
<td>251</td>
</tr>
<tr>
<td>Linking External Databases</td>
<td>85</td>
<td>Reference Management</td>
<td>246</td>
</tr>
<tr>
<td>Links</td>
<td>408, 417</td>
<td>Refresh Annotation</td>
<td>118</td>
</tr>
<tr>
<td>Location Queries</td>
<td>357, 361</td>
<td>Relational Data Base Management Systems</td>
<td>211</td>
</tr>
<tr>
<td>Manually Link</td>
<td>101</td>
<td>Ribbon</td>
<td>4, 223</td>
</tr>
<tr>
<td>Map Book Dialog</td>
<td>453</td>
<td>Save-Back</td>
<td>390</td>
</tr>
<tr>
<td>Map Book Template</td>
<td>451</td>
<td>Save-Back Options</td>
<td>393</td>
</tr>
<tr>
<td>Map Books</td>
<td>440, 441</td>
<td>Saved Queries</td>
<td>364</td>
</tr>
<tr>
<td>Map Explorer</td>
<td>6, 330</td>
<td>Scale Bar</td>
<td>443</td>
</tr>
<tr>
<td>Map Status Bar</td>
<td>258</td>
<td>Scale Dependent Styles</td>
<td>283</td>
</tr>
<tr>
<td>Network Analysis</td>
<td>427</td>
<td>Scale Ranges</td>
<td>264</td>
</tr>
<tr>
<td>Network Topologies</td>
<td>407</td>
<td>Schema</td>
<td>337</td>
</tr>
<tr>
<td>Nodes</td>
<td>408, 417</td>
<td>Schema Editor</td>
<td>330</td>
</tr>
<tr>
<td>North Arrow</td>
<td>443</td>
<td>Shortest Path</td>
<td>427</td>
</tr>
<tr>
<td>Object Class Objects</td>
<td>159</td>
<td>Source Drawings</td>
<td>346</td>
</tr>
<tr>
<td>Object Classes</td>
<td>154</td>
<td>SQL Queries</td>
<td>378</td>
</tr>
<tr>
<td>Object Classification</td>
<td>140, 141, 158</td>
<td>Style Editor</td>
<td>262</td>
</tr>
<tr>
<td>Object Classification Definition File</td>
<td>142</td>
<td>Style Editor Palette</td>
<td>264</td>
</tr>
<tr>
<td>Object Data</td>
<td>54, 57, 67, 165, 378</td>
<td>Style Scale Ranges</td>
<td>262</td>
</tr>
<tr>
<td>Objects</td>
<td>209</td>
<td>Styles</td>
<td>264</td>
</tr>
<tr>
<td>ODBC</td>
<td>229</td>
<td>Stylize Raster Surfaces</td>
<td>275</td>
</tr>
<tr>
<td>Open Data Base Connectivity</td>
<td>230</td>
<td>Stylizing features</td>
<td>262</td>
</tr>
<tr>
<td>Pipe Network</td>
<td>190</td>
<td>Surface</td>
<td>190</td>
</tr>
<tr>
<td>Planning & Analysis Workspace</td>
<td>8</td>
<td>Surface Exaggeration</td>
<td>255, 276</td>
</tr>
<tr>
<td>Point Feature Styles</td>
<td>265</td>
<td>Task Pane</td>
<td>5, 224, 350</td>
</tr>
<tr>
<td>Polygon Feature Styles</td>
<td>266</td>
<td>Theme Feature Labels</td>
<td>293</td>
</tr>
<tr>
<td>Polygon Overlay</td>
<td>429</td>
<td>Theme Legend Labels</td>
<td>293</td>
</tr>
<tr>
<td>Polygon Topologies</td>
<td>416</td>
<td>Theme Ramps</td>
<td>293</td>
</tr>
<tr>
<td>Projection</td>
<td>15</td>
<td>Themes</td>
<td>290, 386</td>
</tr>
<tr>
<td>Properties Palette</td>
<td>76</td>
<td>Tolerance</td>
<td>36</td>
</tr>
<tr>
<td>Property Alteration</td>
<td>387</td>
<td>Topology Analysis</td>
<td>426</td>
</tr>
<tr>
<td>Property Queries</td>
<td>357, 362</td>
<td>Topology Object Data</td>
<td>409</td>
</tr>
<tr>
<td>Pseudo Nodes</td>
<td>36</td>
<td>UDL file</td>
<td>85</td>
</tr>
<tr>
<td>Quick View</td>
<td>349</td>
<td>Update Annotation</td>
<td>118</td>
</tr>
<tr>
<td>Ranges and Styles</td>
<td>285</td>
<td>User Interface</td>
<td>1</td>
</tr>
<tr>
<td>Raster</td>
<td>238, 239, 251</td>
<td>Validating Standards</td>
<td>152, 328, 331, 386</td>
</tr>
<tr>
<td>Raster Feature Layers</td>
<td>254</td>
<td>Vector Objects</td>
<td>239</td>
</tr>
<tr>
<td>Raster Feature Source</td>
<td>252</td>
<td>Viewing Linked Data</td>
<td>102</td>
</tr>
<tr>
<td>Raster Metadata</td>
<td>241</td>
<td>Workspaces</td>
<td>8</td>
</tr>
<tr>
<td>Raster Surface</td>
<td>240, 253</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>